Genetic surveillance for COVID-19 in the light of the novel SARS-CoV-2 variants

Jelena Feenstra

Sr. Manager, Global Scientific Communications Genetic Sciences, Thermo Fisher Scientific

June 16th 2021

The world leader in serving science

SARS-CoV-2 Viral Mutations

Viruses mutate. RNA viruses, like SARS-CoV-2, mutate at high rates in response to selective pressures

Continued uncontrolled transmission of SARS-CoV-2 in many parts of the world is creating conditions for significant virus evolution

SARS-CoV-2 has been mutating at a rate of about one to two mutations per month*

Some recently identified variants, however, have acquired mutations much more rapidly than scientists expected

Mutation vs Variant vs Lineage

Mutation: Error introduced during viral replication

L452R

452

Variant: Genome that contains a particular set of mutations

B.1.427

Lineage: All descendants of a branch of the phylogenetic tree

Phylogenetic Tree of SARS-CoV-2

Worldwide Distribution of SARS-CoV-2 Variants

Potential Implications of New SARS-CoV-2 Variants

Variant Impact

Speed of human to human transmission & increased infectivity

Change disease severity

Susceptibility to therapeutic agents (i.e., monoclonal antibodies, drugs)

Evade vaccineinduced and/or natural immunity

Impact detection by diagnostic tests

Variant of Interest (VOI)

Variant of Concern (VOC)

Variant of High Consequence (VHC)

Variants of Concern (VOC) Circulating in the US

B.1.1.7 (501Y.V1) – UK variant

- Δ69_70
- Δ144
- N501Y
- A570D
- D614G
- P681H
- T716I
- S982A
- D1118H

P.1 (501Y.V3) – Brazil variant

- L18F
- T20N
- P26S
- D138Y
- R190S
- K417T
- E484K
- N501Y
- D614G
- H655Y
- T1027I

B.1.351 (501Y.V2) – SA variant

- D80A
- D215G
- Δ241 242
- K417N
- E484K
- N501Y
- D614G
- A701V

B.1.427 / B.1.429 – California variants

- S13I
- W152C
- L452R
- D614G

Spike protein mutations are often shared among different SARS-CoV-2 variants.

B.1.1.7 or 501Y.V1 Variant

Emerged in the UK in Sept 2020, reported widely in Dec 2020, now reported in 60+ countries*

17 mutations (8 of which in the S gene) acquired more quickly than expected

Concerns

- Increased transmission rates may stress at-capacity health care systems
- Questions about how mutations affect sensitivity claims of diagnostic tests

Human ACE2

The UK Variant

- Includes del69_70 S gene mutation
- Effect on ACE2 binding and virus replication resulting in estimated 70% more transmissibility**
- Recent studies indicate possibility of increased risk of death in patients infected with B.1.1.7***
- Highly likely that COVID-19 vaccines remain effective against this variant****

receptor N501Y 69-70del Virus Spike Protein List of variations displayed in structure (nearest residue if in loop/termini region) H69del V70del(69) Y145del(143) N501Y A570D D614G P681H(674) T716I S982A

^{*}As of 20 January 2021: https://www.forbes.com/sites/roberthart/2021/01/20/infectious-uk-covid-19-variant-detected-in-60-countries-who-says/?sh=3a10ab5b562d

^{**}European Centre for Disease Prevention and Control 20 Dec 2020 Threat Assessment Brief

^{***}https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/955239/NERVTAG_paper_on_variant_of_concern__VOC__B.1.1.7.pdf

^{****}https://www.npr.org/sections/coronavirus-live-updates/2020/12/22/949150817/biontech-ceo-says-highly-likely-vaccine-is-effective-against-u-k-virus-variant

[†] https://www.gisaid.org/references/gisaid-in-the-news/uk-reports-new-variant-termed-vui-20201201/

N501Y Increases SARS-CoV-2 Transmissibility

Spike protein mutations are often shared among different SARS-CoV-2 variants.

https://nextstrain.org/ncov/global

^{*}Luan B et al. (2021) Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Lett doi: https://doi.org/10.1002/1873-3468.14076

^{**}Deshpande A et al. (2021) Epitope classification and RBD binding properties of neutralizing antibodies against SARS-CoV-2 variants of concern. bioRxiv 2021.04.13.439681; doi: https://doi.org/10.1101/2021.04.13.439681

^{10 ***}Castro A et al. (2021) Potential global impact of the N501Y mutation on MHC-II presentation and immune escape. bioRxiv 2021.02.02.429431; doi: https://doi.org/10.1101/2021.02.02.429431

B.1.351 or 501Y.V2 Variant

First reported in South Africa in December 2020. Now 30+ countries*

- Reportedly more contagious, but no evidence of increased disease severity**
- Shares N501Y mutation with B.1.1.7 (UK variant), but emerged independently and is phylogenetically different

Concerns:

- Linked to higher viral load and increased transmission, which could stress at-capacity health care systems
- May be associated with poor response to antibody-based therapies***
- Worries about current vaccine effectiveness due to multiple mutations (N501Y, E484K, K417N) in receptor binding domain (RBD)**

The South Africa Variant

^{*}As of 29 Jan 2021: https://apnews.com/article/coronavirus-variant-south-africa-us-2bc397370cdd44afe916ddd6edbaf870

^{**} WHO: https://www.who.int/csr/don/31-december-2020-sars-cov2-variants/en/

^{***}https://www.cnbc.com/2021/01/05/south-africa-covid-variant-appears-to-obviate-antibody-drugs-dr-scott-gottlieb-says.html

[†] https://www.gisaid.org/references/gisaid-in-the-news/novel-variant-combination-in-spike-receptor-binding-site/

P.1 or 501Y.V3 Variant

First detected in Brazil in December 2020. Now in at least 37 countries*

- Contains several spike protein mutations, including: N501Y, K417T, E484K
- Shares N501Y mutation with B.1.1.7 (UK variant), but emerged independently and is phylogenetically different
- P.1 concerns:
 - Potential increased transmissibility due to higher affinity of mutant S protein for ACE2 receptor**
 - Propensity for SARS-CoV-2 re-infection of individuals with previous non-P.1 infection**
 - Poor response to antibody-based therapies***

^{***}Dejnirattisai W, el al, (2021) Antibody evasion by the P.1 strain of SARS-CoV-2ö Cell Doi:10.1016/j.cell.2021.03.055

^{*}New York Times Variant Tracker - accessed 18 Feb 2021: https://www.nytimes.com/interactive/2021/health/coronavirus-variant-tracker.html

^{**}Faria N. R. et al., (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil; Science Doi: 10.1126/science.abh2644

B.1.617 lineage

Thermo Fisher SCIENTIFIC

- Appeared in October 2020 and now the most prevalent lineage in India
- 49 countries now reporting B.1.617 lineage
- "Double mutant" (L452R and E484Q) & "Triple mutant" due to addition of P681R

Concerns:

- Increased transmissibility¹
- Limited evidence of effect on disease severity¹
- Potentially reduced effectiveness of monoclonal antibody treatments^{2,3}
- Potential reduction in neutralization by post-vaccination sera^{4,5,6}

 $^{^2\} https://www.fda.gov/media/145802/download$

³ https://www.fda.gov/media/145611/download

^{6 4} Yadav PD, Sapkal GN, Abraham P, et al. BioRxiv 2021. DOI: https://doi.org/10.1101/2021.04.23.441101

⁵ Greaney AJ, Loes AN, Crawford KHD, et al. Cell 2021. DOI: https://doi.org/10.1016/j.chom.2021.02.003

⁶ Deng X, Garcia-Knight MA, Khalid MM, et al. MedRxiv 2021. doi: https://doi.org/10.1101/2021.03.07.21252647

https://www.reuters.com/world/uk/public-health-england-says-coronavirus-variant-b16172-is-variant-concern-2021-05-07/

^{**} https://www.cnbc.com/2021/05/10/who-classifies-triple-mutant-covid-variant-from-india-as-global-health-risk-.html

E484K/Q- Enhance Neutralizing Antibodies Escape

- Contributes to resistance to neutralizing antibodies^{1,2,3,4}
- Decreases sensitivity to convalescent and vaccineinduced immune sera^{1,2,3,4}
- Increases affinity for the human ACE2 receptor*

Indian variants:

B1.617, B.1.617.1, B.1.617.3 E484Q

B.1.617.2 E484wt

¹Chen RE et al. (2021) Nat Med 27, 717-726 https://doi.org/10.1038/s41591-021-01294-w

^{*}Nelson et al. (2021) bioRxiv 2021.01.13.426558 https://doi.org/10.1101/2021.01.13.426558

Global Surveillance of SARS-CoV-2 Variants

Public health partners

Monitor viral genome

Detect & Inform on emerging mutations

Determine impact on detection, spread and vaccine / therapy effectivity

Clinical

Isolate

Isolation of SARS-CoV-2 RNA

How: automated isolation using magnetic beads

Detect

Detection of SARS-CoV-2

How: multiplex real-time RT-PCR

Research

Genetic Surveillance

How: Sequence the full viral genome or specific sections / genes of interest

Confirm

Mutation Verification

How: interrogate specific sections or areas of the viral genome by sequencing or genotyping

RT-PCR Applications for Surveillance

Detection of SARS-CoV-2

Multiplex RT-PCR

Mutation Panel

- Target amplification failure in a multiplex RT-PCR diagnostic test can be caused by mutations in emerging variants
- If the assay provides sufficient redundancy, it can be used as a screening tool

- Multiplexed RT-PCR solutions identify simultaneously the presence of several mutations in the viral genome
- They can be applied to detect only known variants of concern

- Individual genotyping assays detecting mutations shared or specific for each variant of concern can also be used
- Provides flexibility and allows customization to the particular epidemiological situation
- Novel assays can be easily added for emerging variants

How to Discriminate the Variants Using a Mutation Panel?

If we test for N501Y, K417N and K417T we can discriminate the 3 VOC

Thermo Fisher

Sequencing as a Surveillance Tool

NGS Assay

Sanger Sequencing

Surveillance of the full viral genome to discover and identify new and emerging variants and mutations.

SARS-CoV-2 Whole Genome Sequencing

- One assay surveys the complete genome
 - >99% genome coverage (~30 kb)
 - Covers all potential serotypes
- Use with biological research samples
- Viral loads as low as 20 copies
- Confirm individual amplicons with Sanger sequencing

Gold standard to sequence short stretches of the viral genome, detect mutations and confirm NGS results.

Surveillance Sanger Sequencing Protocols

- Cost effective sequencing of targeted genes or emerging mutations
- Sanger sequencing protocols and primer sequence sets available for surveillance
 - full S gene sequencing
 - targeted to specific variants

Multiple Research Solutions for Surveillance and Verification

	Verification		Surveillance	
	RT-PCR	Sanger sequencing by capillary electrophoresis		Next-generation sequencing (whole viral genome)
Use Case	Mutation Verification of known mutations	Rapid Verification of genes / areas of interest with known mutations, strains or lineages		Surveillance of the full viral genome to discover and identify new and emerging variants and mutations
Lab profile	Use the same PCR instrument for both detection and mutation Verification	Cost effective and able to see full sequence of mutations		Manual prep resources and skills Experienced with NGS
Number of targets	1-20	1-20		>20 - 10000
Solution Complexity	*	**		***
Surveillance Research Solutions	Primer / Probe sets mutations found in the main circulating variants	Primer sets for specific variants or full S-gene sequencing		Full viral genome
Sample Prep	Manual or Automated	Manual or Automated		Manual or Automated
Sensitivity	**	**		***
Time to Result	hours	hours		days

Thank you

The line has been unmuted for questions.

