

A Practical Approach to Managing Cardiovascular-Kidney-Metabolic Syndrome

Dr. Joseph Vassalotti, MD 12/03/2024

Practical Approach to Managing Cardiovascular-Kidney-Metabolic (CKM) Syndrome: Matching the Risk to the Interventions

Tuesday 3 December 12:00 – 1:00pm

Joseph A. Vassalotti, MD Chief Medical Officer National Kidney Foundation Clinical Professor of Medicine, Icahn School of Medicine at Mount Sinai @Joe_Vassalotti joseph.vassalotti@mountsinai.org

				Persistent albuminuria categories Description and range			
Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012			A1 Normal to mildly increased	A2 Moderately increased 30-300 mg/g 3-30 mg/mmol	A3 Severely increased >300 mg/g >30 mg/mmol		
n²)	G1	Normal or high	≥90	<5 mg/mmor		Zoo Ingrinito	
GFR categories (m//min/ 1.73 m²) Description and range	G2	Mildly decreased	60-89				
ml/mi and r	G3a	Mildly to moderately decreased	45-59				
categories (ml/min/ 1.7 Description and range	G3b	Moderately to severely decreased	30-44				
categ	G4	Severely decreased	15-29				
GFR	G5	Kidney failure	<15				

Disclosure of Financial Relationships

Joseph A. Vassalotti, MD

Support for this program is provided by Abbott. This speaker is presenting at the request of Abbott.

This speaker disclosed relationships with an entity producing, marketing, reselling, or distributing health care goods or services consumed by, or used on, patients.

Consultantship

Novo Nordisk, Inc (US Nephrology Advisory Board) Renalytix, plc (CKD biomarkers) **Speaker's Bureau** Sanofi, Inc (influenza in CKD)

Honoraria

As above

Research Grants/Contracts

No commercial grants

No speaking roles in any consultantship

Objectives

Detect and risk stratify CKD with both estimated GFR (eGFR) and urine albumin-creatinine ratio (uACR).

Assess kidney and cardiovascular risk using heat maps and prediction equations."

Use risk stratification to inform kidney and cardioprotective interventions.

Integrate Cardiovascular-Kidney-Metabolic (CKM) focused screening and management into routine practice.

Case Presentation

- 65-year-old man
- Type-2 diabetes since
 2005, dyslipidemia and
 hypertension
 complicated by Heart
 Failure with preserved
 Ejection Fraction
 (HFpEF).
- Diabetic retinopathy

- Medications:
 - ✓ lisinopril 20 mg daily,
 - metoprolol succinate 100 mg daily,
 - ✓ clopidogrel 30 mg daily,
 - ✓ aspirin 81 mg daily,
 - ✓ atorvastatin 40 mg daily,
 - ✓ insulin lispro and glargine.
- BP 136/84 P72 BMI 32 kg/m²

- ?
- You are doing the initial evaluation.
- What CKD tests do you order?

What CKD Tests do you order?

- Creatinine which panel?
- Cystatin C no available panel
- Urinalysis
- Urine albumin-creatinine ratio
- Urine protein-creatinine ratio

ſ		
	×	-
	×	
		-

What is the recommended test of kidney function for outpatients in routine practice?

A. Cockcroft Gault creatinine clearance

B. eGFR using the MDRD Study equation

C. eGFR using the 2009 CKD-EPI equation using creatinine with and without a race coefficient

D. eGFR using the 2009 CKD-EPI equation using creatinine without a race coefficient

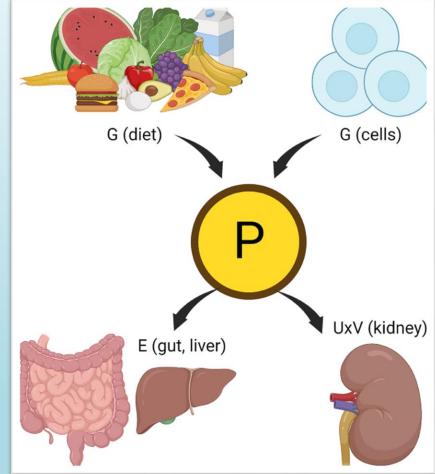
E. eGFR using the 2021 CKD-EPI equation using creatinine refit without a race coefficient.

What is the recommended test of kidney function for outpatients in routine practice?

A. Cockcroft Gault creatinine clearance

B. eGFR using the MDRD Study equation

C. eGFR using the 2009 CKD-EPI equation using creatinine with and without a race coefficient


D. eGFR using the 2009 CKD-EPI equation using creatinine without a race coefficient

E. eGFR using the 2021 CKD-EPI equation using creatinine refit without a race coefficient.

General Concept GFR and non-GFR determinants for a plasma biomarker (P)

GFR determinants include: Urine concentration of P (U) and Urine volume (V).

Non-GFR determinants include: Generation (G) Non-renal elimination (E) Tubular secretion and Tubular reabsorption (not labeled)

Farrell DR, Vassalotti, JA. Screening, identifying, and treating chronic kidney disease: why, who, when, how, and what? *BMC Nephrology* 2024; 25(1):34

Race-Free eGFR Equations

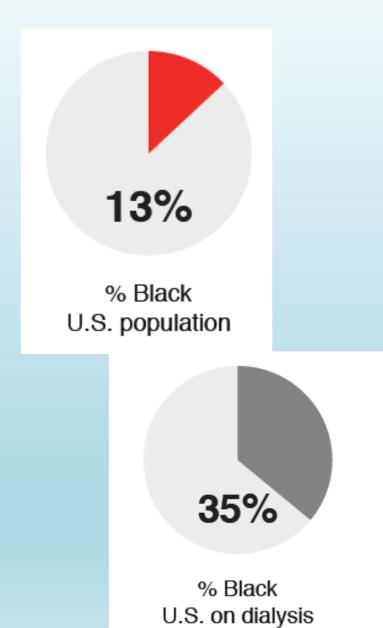
2020 National Kidney Foundation (NKF) and American Society of Nephrology (ASN) Task Force was formed to develop future recommendations.

2021 New Equations Developed and Published¹
 2021 CKD-EPI Creatinine
 2021 CKD-EPI Creatinine-Cystatin C

2021 NKF/ASN Task Force Final Recommendations Published²

- 1) Implement 2021 CKD-EPI creatinine equation in all laboratories
- 2) Facilitate use of cystatin C in individuals at increased risk of CKD
- 3) Further research on eGFR with new markers to eliminate race and ethnic disparities

1. Inker LA, Eneanya ND, Coresh J et al. New creatinine- and cystatin C–based equations to estimate GFR without race. *N Engl J Med.* 2021; 385:1737-1749


2. Delgado C, Baweja M, Crews DC, et al. A unifying approach for GFR estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2021;78(1):103-115.

Kidney Health Inequity

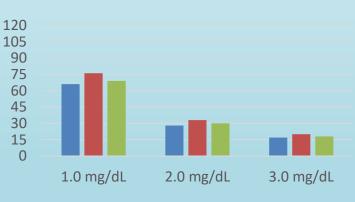
 Kidney health inequity includes disproportionate prevalence of diabetes, hypertension, CKD and dialysis treatment for Blacks or African Americans and other races.

 Kidney health inequity includes lower access to nephrology care, home dialysis and kidney transplant for Blacks or African Americans and other races.

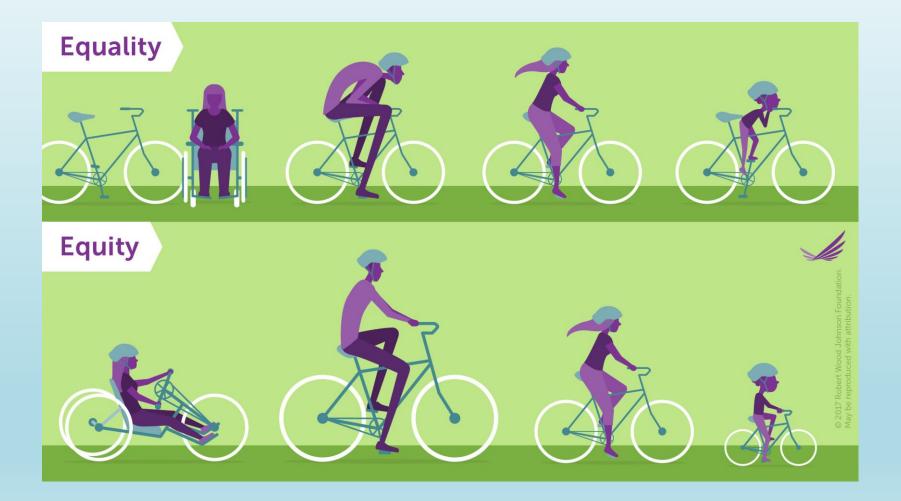
United States Renal Data System <u>www.usrds.org</u> CDC CKD Surveillance System <u>https://nccd.cdc.gov/CKD</u>

"Race is not dichotomous, and models that attempt to distill its complexity and heterogeneity as such introduce more bias and imprecision than 3.7 mL/min/1.73 m² of estimated GFR. Moreover, dermal pigmentation does not modify or mediate kidney disease risk. Socioeconomic status does, racism does, and genetic ancestry may."

JACC: Cardiovascular Interventions 2023; 16: 2309-2320.


Comparison of CKD-EPI eGFRcr Equations 2009 vs 2021

- Blacks or African Americans will have slightly lower eGFR.
- All others will have slightly higher eGFR.
- The "e" in eGFR stands for estimate.

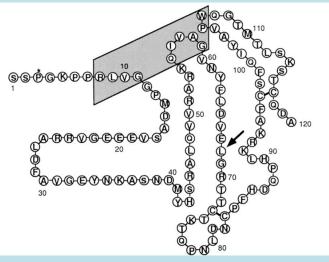

50 Year Old Man

Serum Creatinine

Inker LA, Eneanya ND, Coresh J et al. New creatinine- and cystatin C–based equations to estimate GFR without race. *N Engl J Med.* 2021; 385:1737-1749

Health Equality versus Health Equity Concepts: Bike Graphic

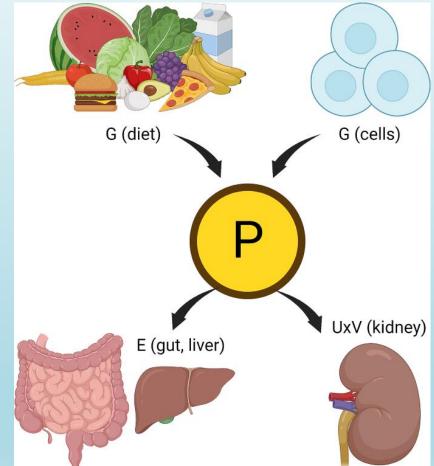
Serum Creatinine and Cystatin C



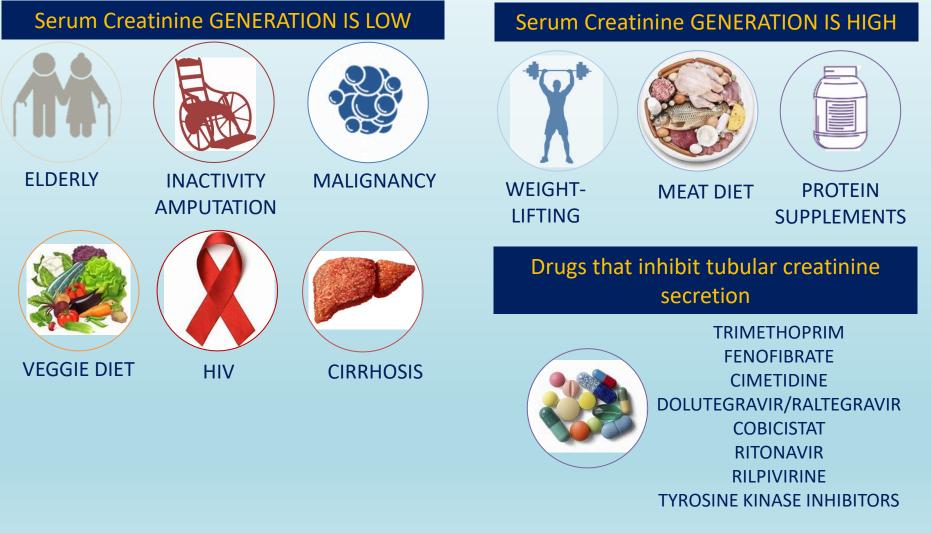
Creatinine

- Size ~ 1 aa
- Kidney function biomarker
- Skeletal Muscle source
- Dietary source
- Tubular secretion elimination

Cystatin C


- 120 aa, 13 kDa protein
- Kidney function biomarker
- Inflammatory marker
- All tissues minimal muscle and diet influence

Grubb, AO. Cystatin C properties and use as a biomarker. Adv Clin Chem. 2000;35:63-99


Creatinine and Cystatin C GFR and non-GFR determinants for a plasma biomarker (P)

- GFR determinants include:
- -Urine concentration of P (U) and
- -Urine volume (V).
- Non-GFR determinants include:
- -Generation (G)
- -Non-renal elimination (E)
- -Tubular secretion and
- -Tubular reabsorption (not labeled)

Farrell DR, Vassalotti, JA. Screening, identifying, and treating chronic kidney disease: why, who, when, how, and what? *BMC Nephrology* 2024; 25(1):34

Clinical contexts in which Cystatin C may yield more accurate estimates of GFR

Advantages, limitations, and clinical considerations in using cystatin C to estimate GFR Kidney360 2022;3(10):807-814.

Suggestions for Indications for Cystatin C Testing

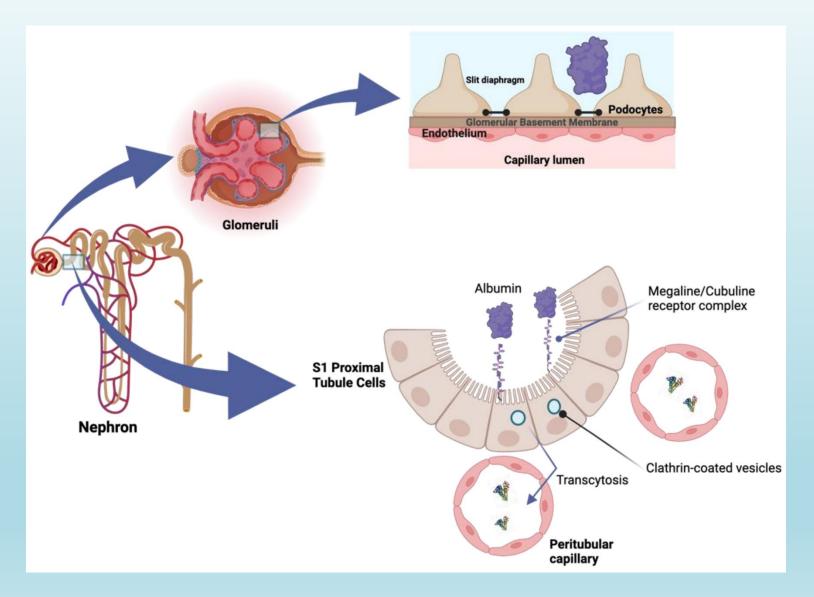
- eGFR_{cr} 45-60 ml/min/1.73 m² without markers of kidney damage or CKD stage G3aA1
- Conditions associated with non-GFR determinants of creatinine
- Near clinical cut points in decision making
- Clinicians could consider eGFR 60-74 without markers of kidney damage to confirm absence of CKD
- Area for clinical investigation

What is the recommended test of kidney damage for outpatients in routine practice?

A. 24-hour urine protein

B. 24-hour urine creatinine clearance

C. Urine dipstick for protein

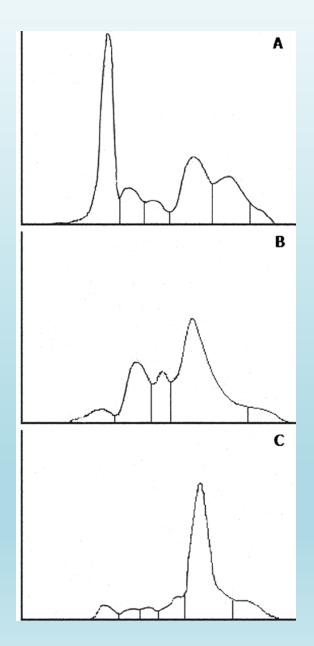

D. Urine protein-creatinine ratio

E. Urine albumin-creatinine ratio

What is the recommended test of kidney damage for outpatients in routine practice?

- A. 24-hour urine protein
- B. 24-hour urine creatinine clearance
- C. Urine dipstick for protein
- D. Urine protein-creatinine ratio
- E. Urine albumin-creatinine ratio

Albuminuria Mechanism


J. Clin. Med. 2024:13(3):777.

Proteinuria subtypes

Glomerular 60 to 80% albumin

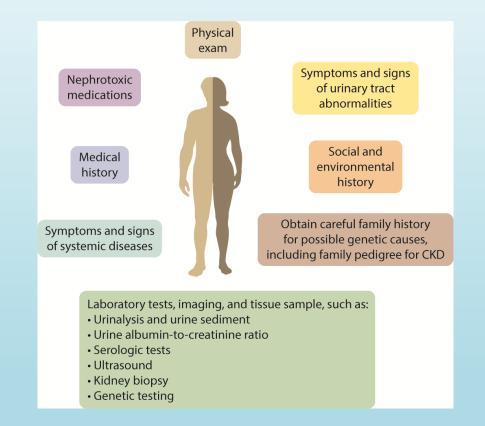
Tubular

Overflow

Nephrology at Point of Care 2016;2(1)e8-e16

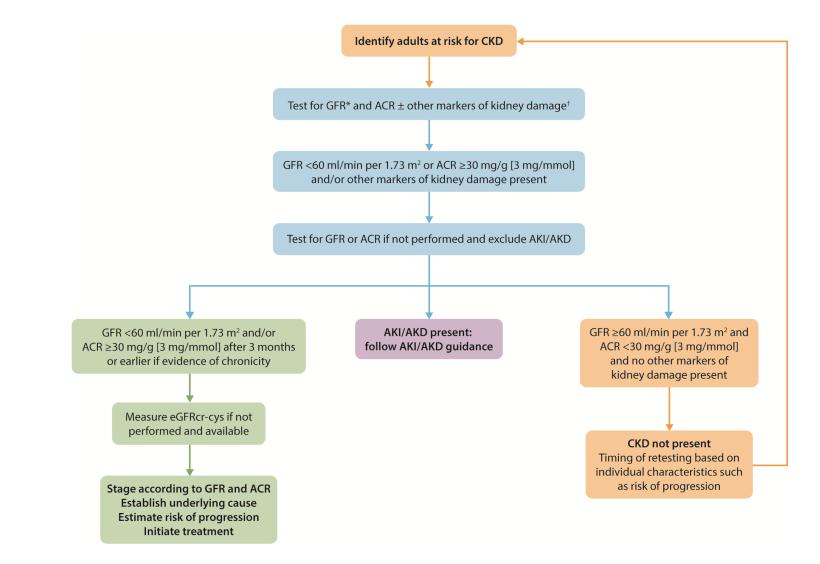
Albuminuria is the preferred kidney damage test

Albuminuria Or Proteinuria Description+	Albuminuria Or Proteinuria Category	Albumin mg/24- hour urine+	uACR+ mg/g	uPCR* mg/g	Dipstick Proteinuria
Normal to mildly increased	A1	< 30	< 30	< 150*	Negative to trace
Moderately increased	A2	30 to 300	30 to 300	150 to 650*	Trace to +1
Severely Increased	A3	> 300	> 300	> 650*	+2 or greater
Nephrotic Range	A3 Nephrotic Range	>2,000*	>2,000*	>3,500+ (by definition)	+2 or greater


+These categories are adapted from KDIGO; Kidney Disease Improving Global Outcomes.

*These categories are from a meta-analysis of uPCR to uACR approximate conversion. Ann Intern Med 2020;173(6):426-435

J Appl Lab Med. 2023;8(4):789–816.


Evaluation – CKD Definition

CKD is defined as abnormalities of kidney structure or function, present for >3 months, with implications for health. The definition includes many different markers of kidney damage, not just decreased GFR and ACR and the cause of CKD should be actively sought (Figure). CKD is classified according to **C**ause, **G**FR, and **A**CR to establish severity and guide the type and timing of interventions.

EVALUATION – DISTINGUISH BETWEEN AKD AND CKD

It is important to distinguish between AKD and CKD and to establish chronicity.

Kidney Int. 2024;105(4):S117-S314.

Case Presentation

- 65-year-old man
- Type-2 diabetes since
 2005, dyslipidemia and
 hypertension
 complicated by Heart
 Failure with preserved
 Ejection Fraction
 (HFpEF).
- Diabetic retinopathy

- Medications:
 - ✓ lisinopril 20 mg daily,
 - metoprolol succinate 100 mg daily,
 - ✓ clopidogrel 30 mg daily,
 - ✓ aspirin 81 mg daily,
 - ✓ atorvastatin 40 mg daily,
 - ✓ insulin lispro and glargine.
- BP 136/84 P72 BMI 32 kg/m²

- ?
- You are doing the initial evaluation.
- What CKD tests do you order?

Case Presentation

- 65-year-old man
- Type-2 diabetes since 2005, dyslipidemia and hypertension complicated by Heart Failure with preserved Ejection Fraction (HFpEF).
- Diabetic retinopathy

Medications:

- lisinopril 20 mg daily,
- metoprolol succinate 100 mg daily,
- ✓ clopidogrel 30 mg daily,
- ✓ aspirin 81 mg daily,
- ✓ atorvastatin 40 mg daily,
- ✓ insulin lispro and glargine.

• BP 136/84 P72 BMI 32 kg/m²

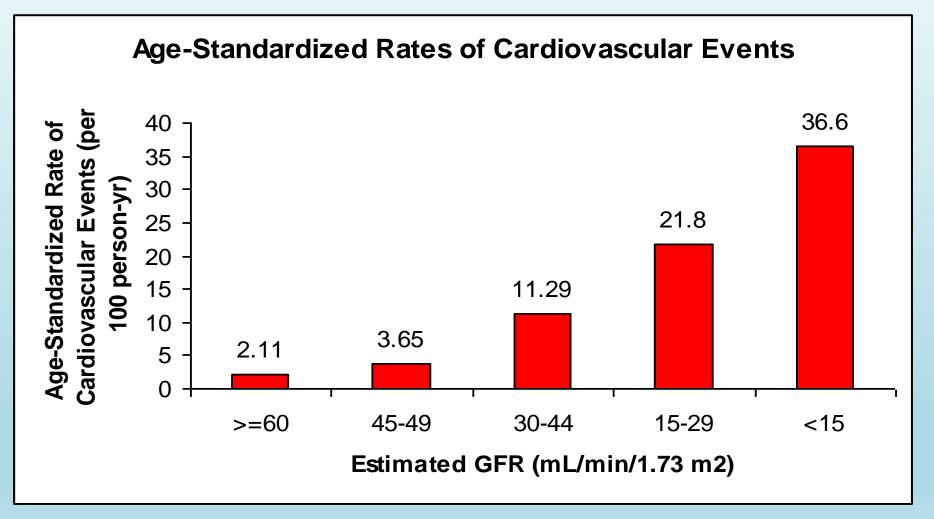
- ↓ Creatinine 1.40 + eGFR 46 = CKD G3a
- uACR 2200 mg/g = CKD A3 or CKD G3aA3
- ¦≻ uPCR 3600 mg/g

The CKD tests: eGFR and uACR

					Kidney damage (uACR)			
					Persistent albuminuria categories Description and range			
					A1	A2	A3	
	Prognosis of CKD by GFR and albuminuria categories: KDIGO 2012				Normal to mildly increased	Moderately increased	Severely increased	
ł				<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol		
-K)	GFR categories (mL/min/1.73 m ²) Description and range	G1	Normal or high	≥90				
Kidney function (eGFR)		G2	Mildly decreased	60–89				
		G3a	Mildly to moderately decreased	45–59				
		G3b	Moderately to severely decreased	30–44				
		G4	Severely decreased	15–29				
Kidi		G5	Kidney failure	<15				

Green, low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red: very high risk.

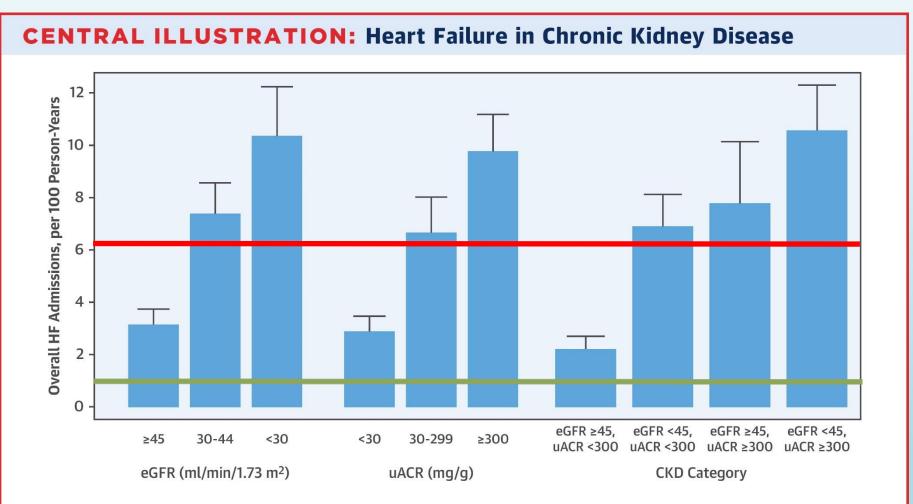
Kidney Int. 2024;105(4):S117-S314.


The CKD tests: eGFR and uACR

					Kidney damage (uACR)			
					Persistent albuminuria categories Description and range			
					A1	A2	A3	
	Prognosis of CKD by GFR and albuminuria categories: KDIGO 2012			Normal to mildly increased	Moderately increased	Severely increased		
ł				<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol		
FR) -	GFR categories (mL/min/1.73 m ²) Description and range	G1	Normal or high	≥90				
(eGI		G2	Mildly decreased	60–89				
Kidney function (eGFR)		G3a	Mildly to moderately decreased	45–59				
		G3b	Moderately to severely decreased	30–44				
		G4	Severely decreased	15–29				
Kid		G5	Kidney failure	<15				

Green, low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red: very high risk.

Kidney Int. 2024;105(4):S117-S314.


CKD Severity Predicts CVD Risk: Cardiovascular events by eGFR

Kaiser outpatients with at least one sCr n = 1,120,295

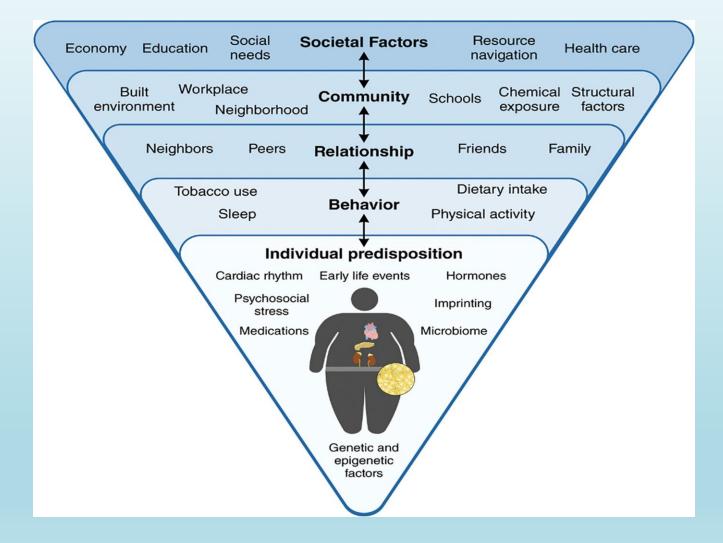
Go AS, et al: NEJM. 2004: 351;1296-1305

Heart Failure Hospitalizationby eGFR and uACR

Bansal, N. et al. J Am Coll Cardiol. 2019;73(21):2691-700.

CRIC cohort n = 3,791, unadjusted rates shown, & Figure adapted with

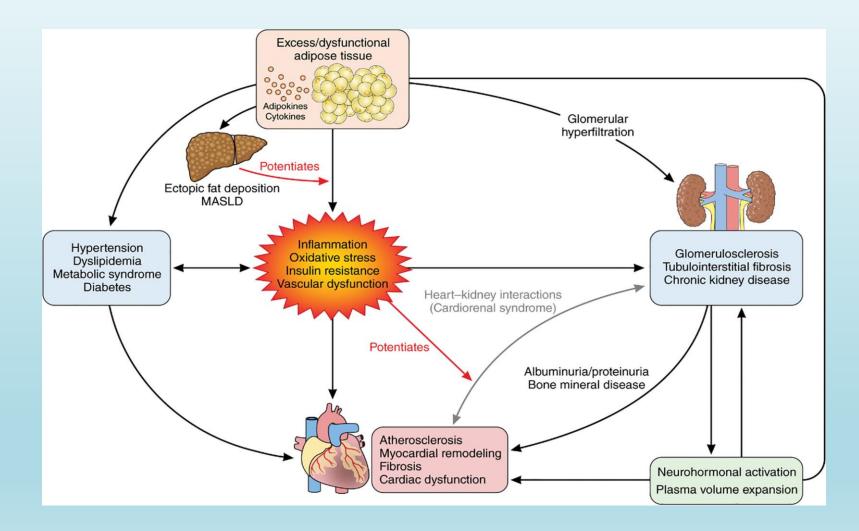
- Crude CKD cohort rate 5.8
- Crude population rate 0.5


Case Presentation

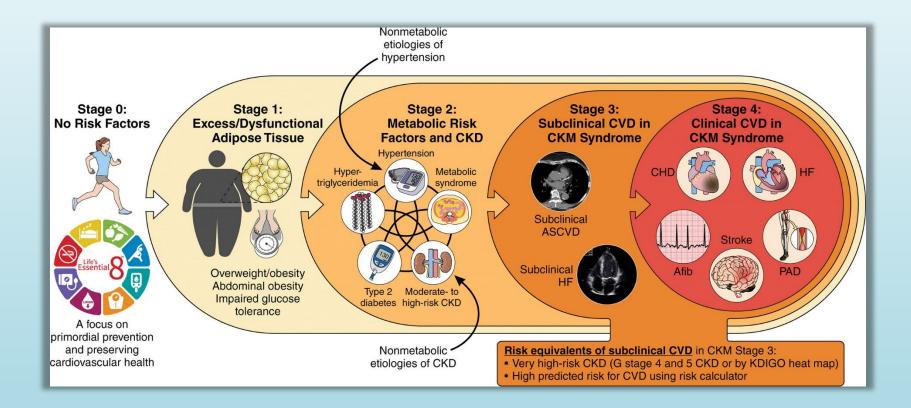
- 65-year-old man
- Type-2 diabetes since 2005, dyslipidemia and hypertension complicated by Heart Failure with preserved Ejection Fraction (HFpEF).
- Diabetic retinopathy
- Creatinine 1.40 + eGFR 46 = CKD G3a
- uACR 2200 mg/g = CKD A3 or CKD G3aA3
- > uPCR 3600 mg/g

Medications:

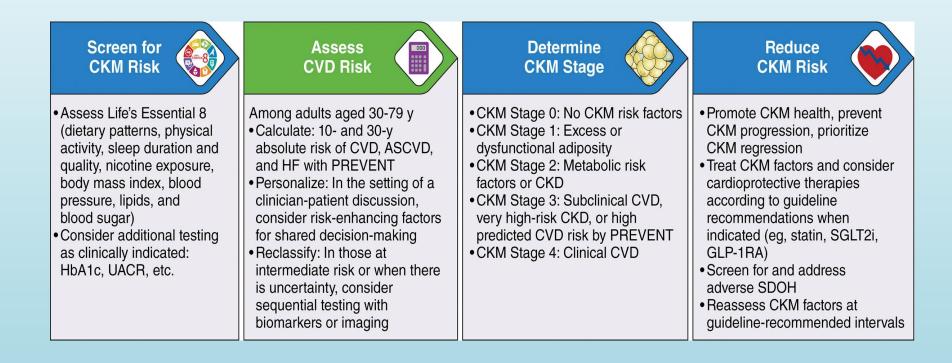
- lisinopril 20 mg daily,
- metoprolol succinate 100 mg daily,
- ✓ clopidogrel 30 mg daily,
- ✓ aspirin 81 mg daily,
- ✓ atorvastatin 40 mg daily,
- ✓ insulin lispro and glargine.
- BP 136/84 P72 BMI 32 kg/m²
 BMI 32 kg/m²


Obesity Initiation

Circulation. 2023;148(20):1636-1664.


Conceptual Diagram of the

Cardiovascular-Kidney-Metabolic (CKM) Syndrome


Circulation. 2023;148(20):1636-1664.

Cardiovascular-Kidney-Metabolic (CKM) Syndrome

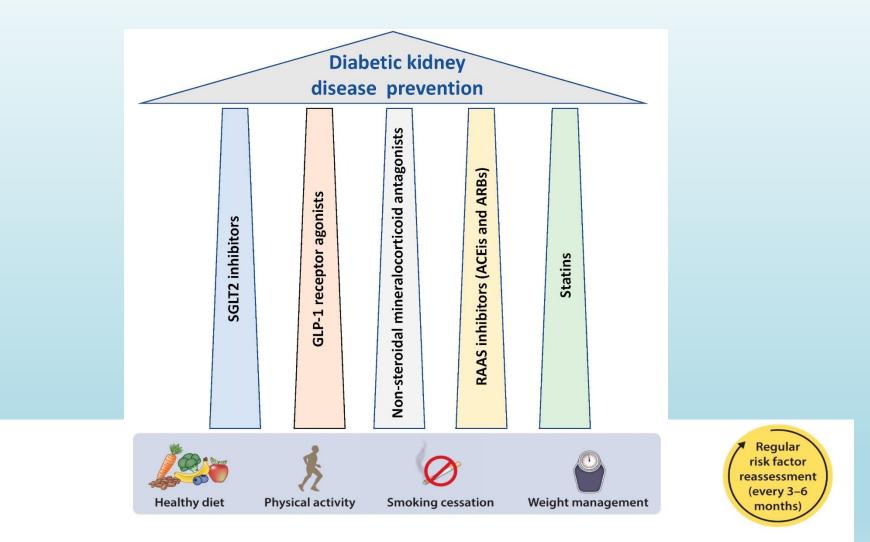
Ndumele CE, et al. Circulation. 2023;148:1606-1635.

Conceptual Framework for the Cardiovascular Kidney Metabolic Syndrome

Ndumele CE, et al. Circulation. 2023;148:1606-1635.

Case Presentation

- 65-year-old man
- Type-2 diabetes since 2005, dyslipidemia and hypertension complicated by Heart Failure with preserved Ejection Fraction (HFpEF).
- Diabetic retinopathy
- Creatinine 1.40 + eGFR 46 = CKD G3a
- uACR 2200 mg/g = CKD A3 or CKD G3aA3
- uPCR 3600 mg/g


- Medications:
 - ✓ lisinopril 20 mg daily,
 - metoprolol succinate 100 mg daily,
 - ✓ clopidogrel 30 mg daily,
 - ✓ aspirin 81 mg daily,
 - ✓ atorvastatin 40 mg daily,
 - ✓ insulin lispro and glargine.
- BP 136/84 P72 BMI 32 kg/m²

Lifestyle Foundation

Circulation. 2022 Aug 2;146(5):e18-e43

Kidney and Cardiovascular Protection

Pharmaceutics 2023;15:1343 Diabetes Care 2022;45:3075

Lifestyle

Nova classification of food processing

THE 4 NOVA GROUPS

1 Unprocessed or minimally processed foods Fruits, vegetables, beans, nuts, seeds, eggs, juice, meat, poultry, seafood, grains (whole or refined), pasta, yogurt, milk, tea, coffee, etc.

2 Processed culinary ingredients

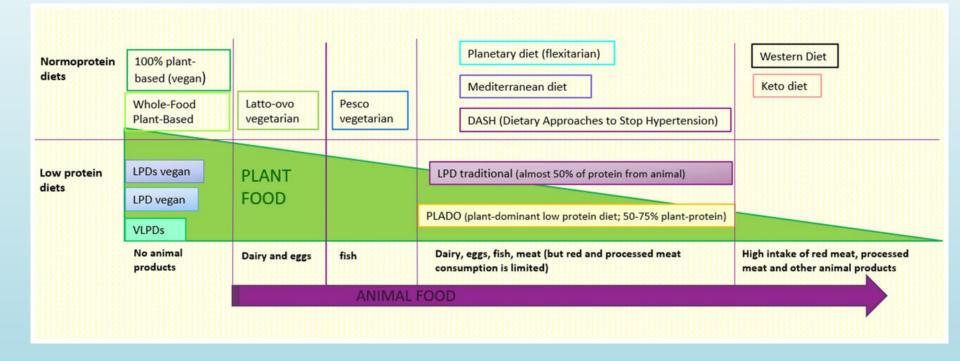
Sugar, honey, maple syrup, butter, lard, vegetable oils, salt, etc.

3 Processed foods

Salted nuts; cured meats or fish; canned or bottled fish, vegetables, beans, or fruit; unpackaged cheeses or breads (from a bakery), etc.

4 Ultra-processed foods

Packaged breads, most breakfast cereals, bars, flavored yogurts, ice cream, chocolate, candies, cookies, pastries, cakes, margarine, frozen pizza, sausages, hot dogs, chicken nuggets, most sugary drinks, instant soups, sauces, noodles, etc.



Dietary patterns

Abbreviations: DASH – Dietary Approaches to Stop Hypertension; LPD – low protein diet; PLADO – plant-dominant low protein diet; VLPD – very low protein diet.

J Clin Med. 2023;12(19):6137.

Case Presentation

- 65-year-old man
- Type-2 diabetes since 2005, dyslipidemia and hypertension complicated by Heart Failure with preserved Ejection Fraction (HFpEF).
- Diabetic retinopathy
- Creatinine 1.40 + eGFR 46 = CKD G3a
- uACR 2200 mg/g = CKD A3 or CKD G3aA3
- uPCR 3600 mg/g

- Medications:
 - ✓ lisinopril 20 mg daily,
 - metoprolol succinate 100 mg daily,
 - ✓ clopidogrel 30 mg daily,
 - ✓ aspirin 81 mg daily,
 - ✓ atorvastatin 40 mg daily,
 - ✓ insulin lispro and glargine.
- BP 136/84 P72 BMI 32 kg/m²

Kidney Failure Risk Equation use is another reason to check albuminuria

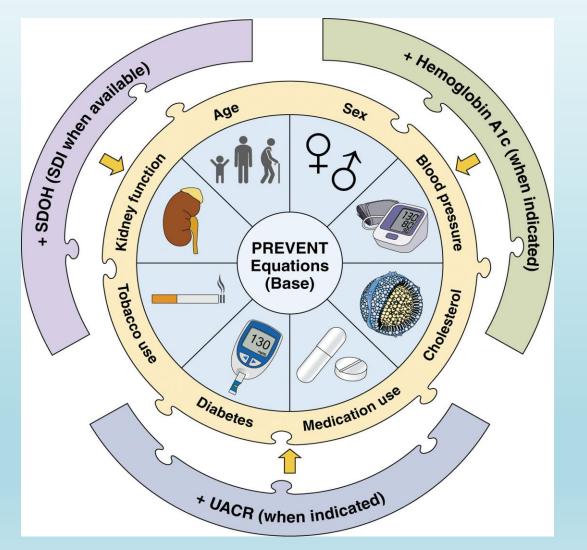
KidneyFailureRisk.com

KIDNEY FAILURE RISK EQUATION

Using the patient's Urine, Sex, Age and GFR, the kidney failure risk equation provides the 2 and 5 year probability of treated kidney failure for a potential patient with CKD stage 3 to 5.

countries worldwide, making it the most accurate and efficient way of finding out the patient's risk.

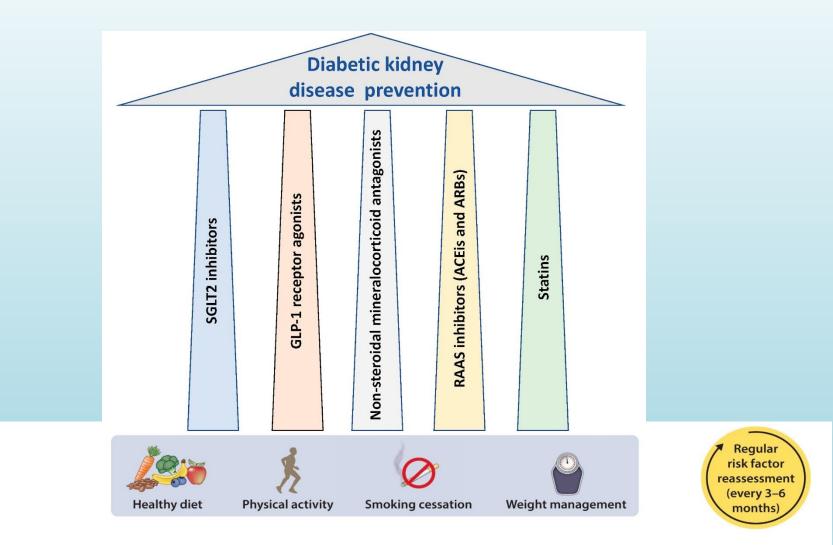
What is individual risk of progression to kidney failure requiring dialysis or transplant?



Risk thresholds used in health systems include:

- 3-5% at 5 years for referral to nephrologist
- 10% at 2 years for team-based care (Nurse, Dietitian, Pharmacist)
- 20-40% at 2 years for planning a transplant or dialysis

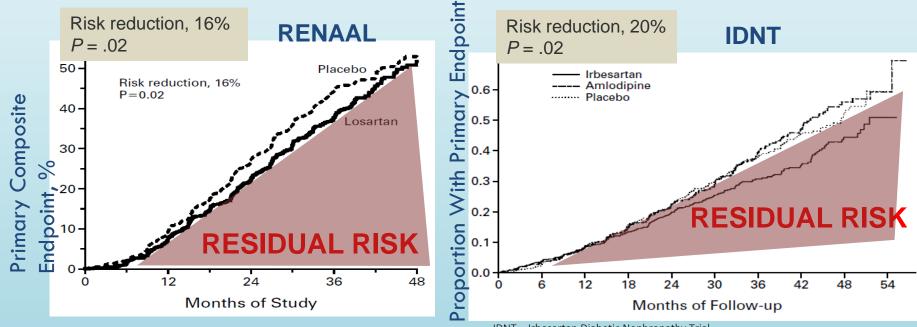
JAMA. 2016;315(2):1-11 https://kidneyfailurerisk.com/


PREVENT Equation Predicting Cardiovascular Risk

10-year risk
 1) Cardiovascular Disease
 (CVD) overall:
 2) Atherosclerotic CVD
 3) Heart Failure CVD

https://professional.heart.org/en/guidelines-and-statements/prevent-calculator

Kidney and Cardiovascular Protection



Pharmaceutics 2023;15:1343 Diabetes Care 2022;45:3075

Lifestyle

Kidney Protection With ARBs in Type 2 Diabetes With Hypertension and Albuminuria

Doubling of serum creatinine, ESKD, or death

RENAAL – Reduction of Endpoints With the Angiotensin Receptor II Antagonist Losartan *No increase in the incidence of adverse events with losartan Brenner B, et al. N Engl J Med. 2001;345:861-9.

SAEs: greater number of patients developing hyperkalemia in irbesartan group (P=.01); 23.7% of patients stopped study medication before end of study discontinuations were evenly distributed between treatment groups; most common reason for discontinuation was clinical cardiovascular event.

Lewis EJ, et al. N Engl J Med. 2001;345:851-60.

IDNT – Irbesartan Diabetic Nephropathy Trial

Slowing CKD Progression: ACEi or ARB

- Check labs within two weeks after initiation (opinion).
 - Potassium
 - If less than 30% serum creatinine (Scr) increase, continue and monitor.
 - If more than 30% Scr increase, stop drug and evaluate for renal artery stenosis (RAS) and volume contraction.
- Avoid ACEi and ARB in combination¹⁻³
 - Risk of adverse events (hemodynamic AKI, hyperkalemia)
- ACEi vs ARB have similar outcomes data, but tolerability is better for ARB.

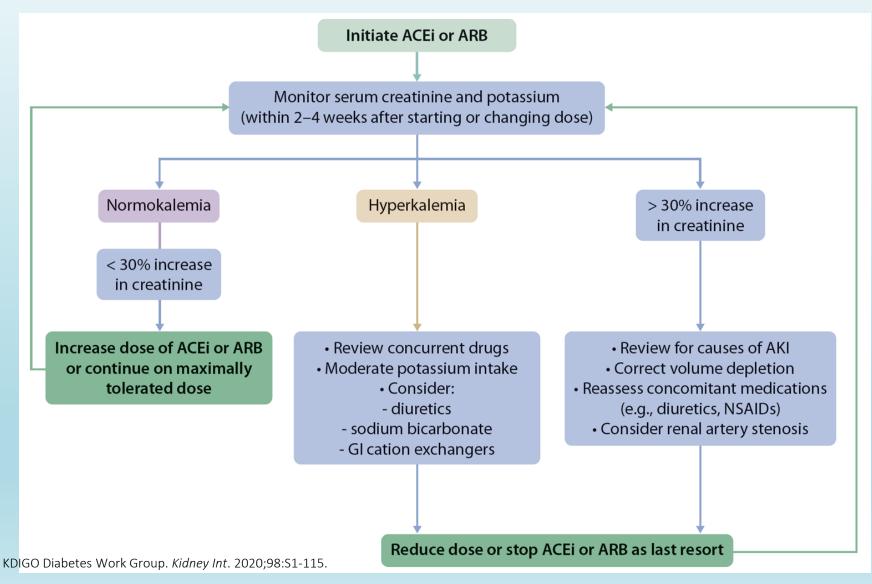
- 1) Kunz R, et al. Ann Intern Med. 2008;148:30-48
- 2) Mann J, et al. ONTARGET study. Lancet. 2008;372:547-553
- 3) Fried LF, et al. VA Nephron D Study. N Engl J Med. 2013;369:1892-1903

Predictors of Hyperkalemia before Starting Therapy Derived from Trials

- eGFR <45 mL/min/1.73m²
- Serum potassium >4.5 mEq/L
- eGFR <45 mL/min/1.73m² + serum K >4.5 mEq/L
 (Strongest Predictor)

Predictors of Hyperkalemia before Starting Therapy Derived from Trials

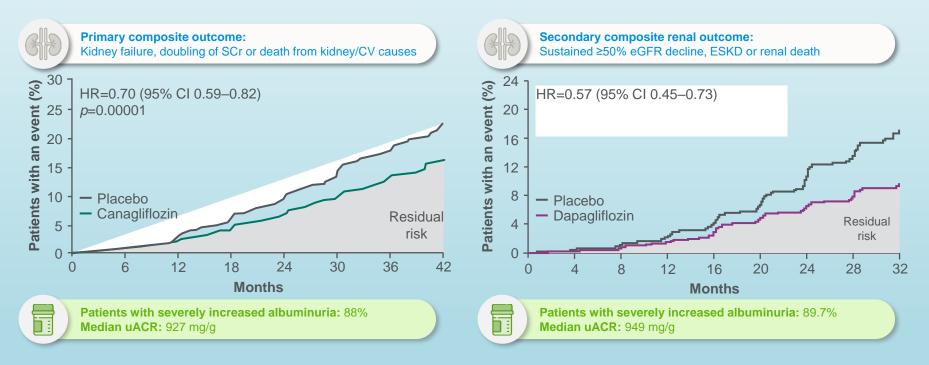
- eGFR <45 mL/min/1.73m²
- Serum potassium >4.5 mEq/L
- eGFR <45 mL/min/1.73m² + serum K >4.5 mEq/L
 (Strongest Predictor)
- eGFR <30 mL/min/1.73m² obviously high risk


Lazich I, et al. *Semin Nephrol* 2014; 22(2):123-32 Khosla N, et al. *Am J Nephrol* 2009; 30(5):418-424

Predictors of Hyperkalemia before Starting Therapy Derived from Trials

- eGFR <45 mL/min/1.73m²
- Serum potassium >4.5 mEq/L
- eGFR <45 mL/min/1.73m² + serum K >4.5 mEq/L
 (Strongest Predictor)
- eGFR <30 mL/min/1.73m² obviously high risk
- In general continue ACEi or ARB for eGFR <30 mL/min/1.73m², discontinuing only for intractable hyperkalemia or concerns about low eGFR.

Lazich I, et al. *Semin Nephrol* 2014; 22(2):123-32 Khosla N, et al. *Am J Nephrol* 2009; 30(5):418-424

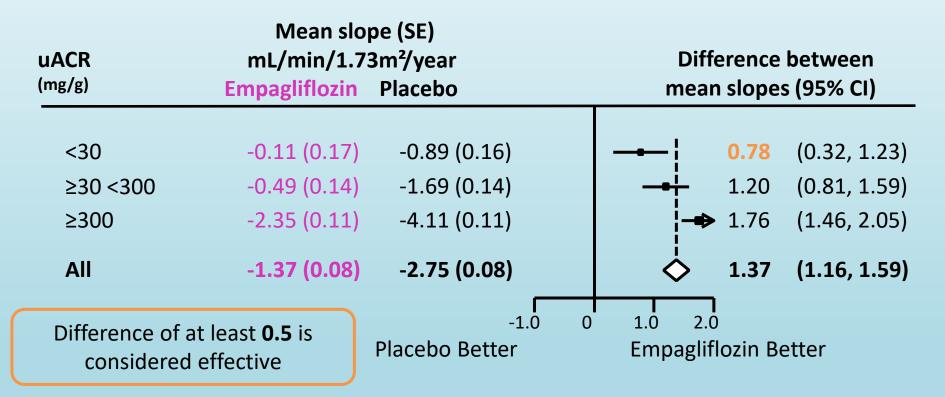

ACEI or ARB: Dose Titration and Side Effect Monitoring

Despite RAS blockade and SGLT-2 inhibition, patients with T2DM and advanced CKD are at risk of CKD progression

CREDENCE: Canagliflozin (+ ACEi/ARB) vs placebo¹

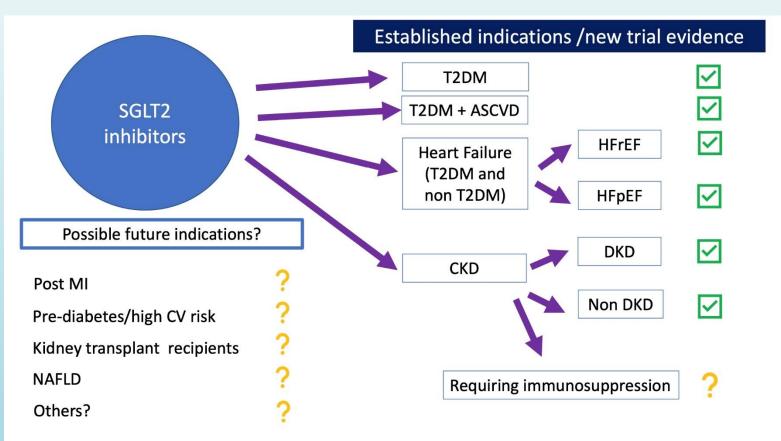
DAPA-CKD: Dapagliflozin (+ACEi/ARB) vs placebo (T2D subgroup)²

ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker; CI, confidence interval; ESKD, end-stage kidney disease; HR, hazard ratio; NNT, number needed to treat;


SGLT-2, sodium-glucose co-transporter-2

- 1. Perkovic V, et al. N Engl J Med 2019;380:2295–2306.
- 2. Wheeler DC, et al. Lancet Diabetes Endocrinol 2021;9:22-31

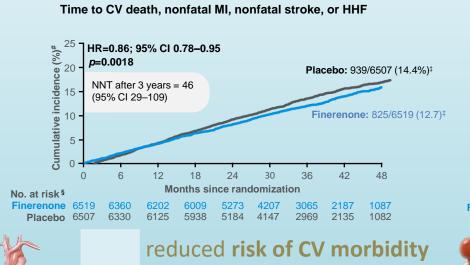
EMPA-KIDNEY Primary Outcome Empagliflozin vs Placebo Impact of Albuminuria


Subgroup	Empagliflozin Placebo no. of patients with event/total no.	Hazard Ratio for Progression of Kidney Disease or Death from Cardiovascular Causes (95% CI)	
Diabetes mellitus			
Present	218/1525 306/1515	0.64 (0.54–0.77)	
Absent	214/1779 252/1790	0.82 (0.68–0.99)	
Estimated GFR			
<30 ml/min/1.73 m ²	247/1131 317/1151	0.73 (0.62–0.86)	
≥30 to <45 ml/min/1.73 m ²	140/1467 175/1461	0.78 (0.62–0.97)	
≥45 ml/min/1.73 m²	45/706 66/693	0.64 (0.44–0.93)	
Urinary albumin-to-creatinine ratio)		
<30	42/665 42/663	1.01 (0.66–1.55)	
≥30 to ≤300	67/927 78/937	0.91 (0.65–1.26)	
>300	323/1712 438/1705	— 0.67 (0.58–0.78)	
All patients	432/3304 558/3305	0.72 (0.64–0.82) 0.5 1.0 1.5 2.0 Empagliflozin Better Placebo Better	

EMPA-KIDNEY eGFR Slopes by Albuminuria: Benefit across albuminuria levels

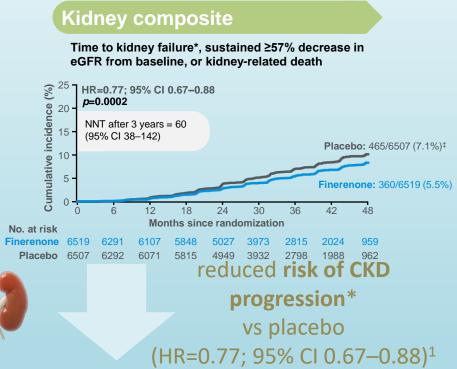
N Engl J Med 2023;388:117-127.

Summary of Evidence-based SGLT-2 Inhibitor Use



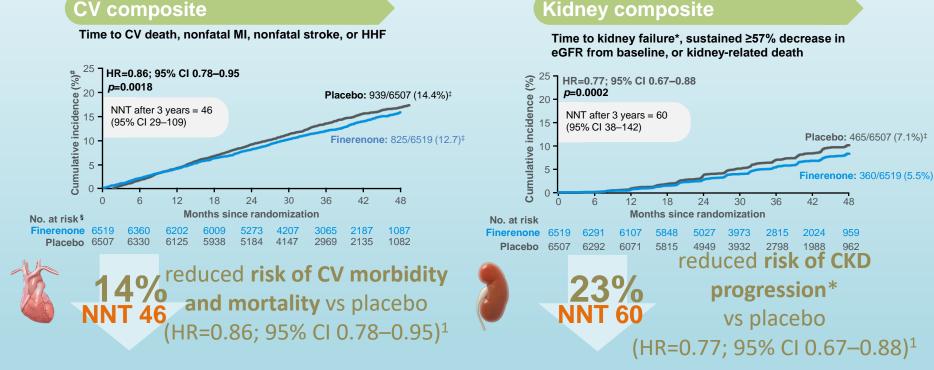
Legend

Figure 1. Summary of current evidence-based indications for SGLT2 inhibition. Indicates evidence-based indication for SGLT2 inhibition. ? indicates areas where more data are needed. Abbreviations: ASCVD- Atherosclerotic Cardiovascular Disease, CKD- chronic kidney disease, DKD- diabetic kidney disease, HFrEF- heart failure with reduced ejection fraction, HFpEF- heart failure with preserved ejection fraction, MI- myocardial infarction, NAFLD- non-alcoholic fatty liver disease, T2DM- type 2 diabetes mellitus.


Lancet 2022;400(10365):1745-1747.

The FIDELITY primary analysis showed significant risk reductions in CV and kidney outcomes

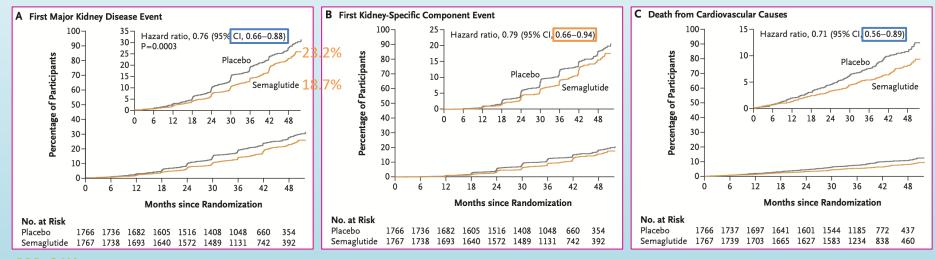
CV composite


and mortality vs placebo (HR=0.86; 95% CI 0.78–0.95)¹

*ESKD or an eGFR <15 mL/min/1.73 m²; events were classified as renal death if: (1) the patient died; (2) KRT had not been initiated despite being clinically indicated; and (3) there was no other likely cause of death; #Cumulative incidence calculated by Aalen–Johansen estimator using deaths due to other causes as competing risk; [‡]number of patients with an event over a median of 3.0 years of follow-up; [§] at-risk subjects were calculated at start of time point; CI, confidence interval; ESKD, end-stage kidney disease; HR hazard ratio; KRT, kidney replacement therapy; NNT, number needed to treat.

Agarwal R, et al. Eur Heart J 2021; 42(2):152-161.

The FIDELITY primary analysis showed significant risk reductions in CV and kidney outcomes


*ESKD or an eGFR <15 mL/min/1.73 m²; events were classified as renal death if: (1) the patient died; (2) KRT had not been initiated despite being clinically indicated; and (3) there was no other likely cause of death; #Cumulative incidence calculated by Aalen–Johansen estimator using deaths due to other causes as competing risk; [‡]number of patients with an event over a median of 3.0 years of follow-up; [§] at-risk subjects were calculated at start of time point; CI, confidence interval; ESKD, end-stage kidney disease; HR hazard ratio; KRT, kidney replacement therapy; NNT, number needed to treat.

Agarwal R, et al. Eur Heart J 2021; 42(2):152-161.

Five facts of Finerenone for use in CKD in T2DM

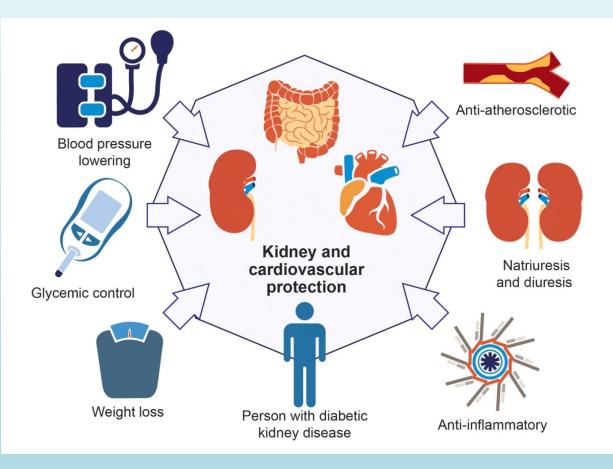
- start if K < 5
- keep going till K at most 5.5.
- use if eGFR > 25 (5 x 5).
- expect a 5th reduction in dialysis
- and more than a 5th reduction in Heart Failure Hospitalization.

GLP1RA significantly improves kidney outcomes and decreases risk of death from CV causes in T2DM

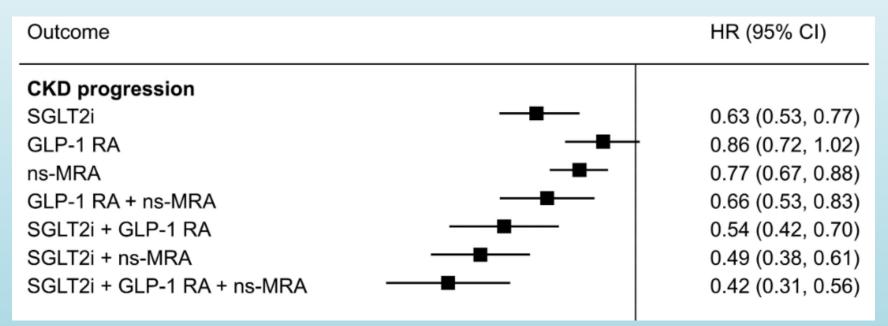
RRR: 24%

NNT: 20 per 3 years

N Engl J Med. 2024:391(2):109-121.


GLP1RA Potential Mechanisms of Kidney and Cardiovascular Protection

FLOW Semaglutide vs placebo Trial week 104


The mean SBP reduction 2.23 mm Hg (95% CI, 1.13 to 3.33)

The mean A1c reduction 0.81% (95% CI, 0.72 to 0.90)

Weight loss 4.10 kg (95% CI, 3.65 to 4.56)

Estimated treatment effects on CKD progression with SGLT2i, GLP-1RA, and ns-MRA, alone and in combination, when added to ACEi or ARB in patients with T2DM and uACR at least 30 mg/g

Data from RCTs: SGLT2i (2), ns-MRA (2) and 8 GLP1RA (8) other than FLOW

Circulation. 2024; 6;149(6):450-462.

Nephrology Referral Indications - opinion

KDIGO Heat Map								
				Persistent albuminuria categories, Description and range				
G	Guide to Frequency of Monitoring (number of times per year) + Referral decision making by GFR and Albuminuria Category			A1	A2	A3		
b				Normal to mildly increased	Moderately increased	Severely increased		
			<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol			
	G1	Normal or high	≥90	1 if CKD	1 Monitor	2 Refer*		
1.73 m² 1ge	G2	Mildly decreased	60-89	1 if CKD	1 Monitor	2 Refer*		
GFR categories (ml/min/ 1.73 m²), Description and range	G3a	Mildly to moderately decreased	45-59	1 Monitor	2 Monitor	3 Refer		
	G3b	Moderately to severely decreased	30-44	2 Monitor	3 Monitor	3 Refer		
FR cate Des	G4	Severely decreased	15-29	3 Refer*	3 Refer*	4+ Refer		
0	G5	Kidney failure	<15	4+ Refer	4+ Refer	4+ Refer		

GFR and albuminuria grid to reflect the risk of progression by intensity of coloring (green, yellow, orange, red, deep red). The numbers in the boxes are a guide to the frequency of monitoring (number of times per year). The words in the boxes are a guide for referral decision making (monitor or referral to specialist kidney care services). *Referring clinicians may wish to discuss with their nephrology service depending on local arrangements regarding monitoring or referring.

Nephrology Referral Indications - opinion

GFR < 30 ml/min/1.73 m² (GFR categories G4-G5)

A 25% or greater drop in eGFR

CKD Progression with a sustained decline in eGFR > 5 ml/min/1.73 m² per year

A consistent finding of significant albuminuria (category A3)

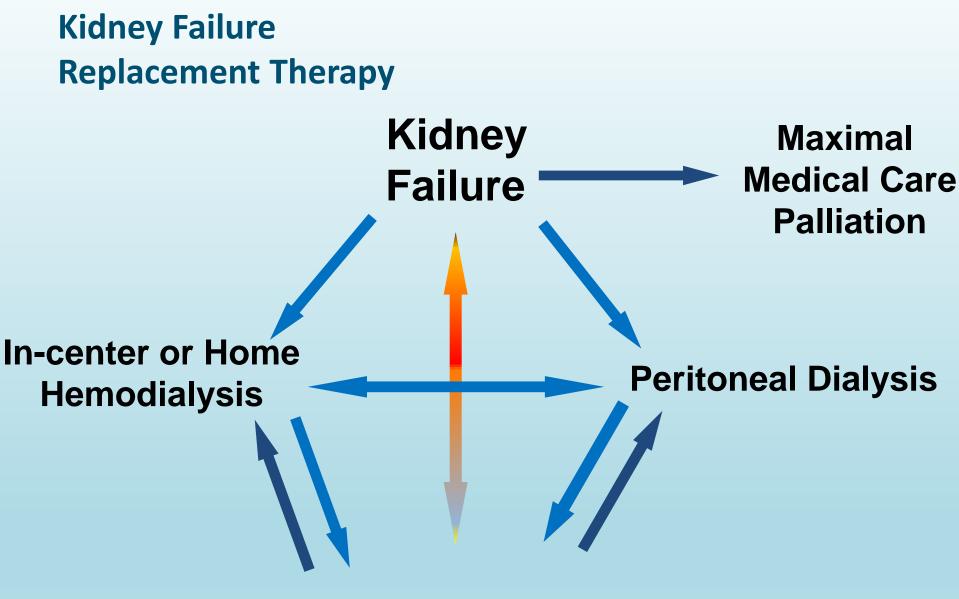
Persistent unexplained hematuria

Secondary hyperparathyroidism, persistent anion gap acidosis, non deficiency anemia

CKD and hypertension refractory to treatment with 4 or more antihypertensive agents

Persistent abnormalities of serum potassium

Recurrent or extensive nephrolithiasis


Hereditary kidney disease or unknown cause of CKD

Why Refer to Nephrology

- Identify Cause Kidney biopsy in selected cases
- Slow Progression of CKD
- CKD Complications management
 - CKD Anemia
 - CKD Hyperkalemia
 - CKD Mineral and Bone Disease
 - CKD Metabolic Acidosis
 - CKD Malnutrition
- Medication management
- Kidney Failure Replacement Therapy (KFRT) decision making and planning

Observational Studies of Early versus Late Nephrology Consultation

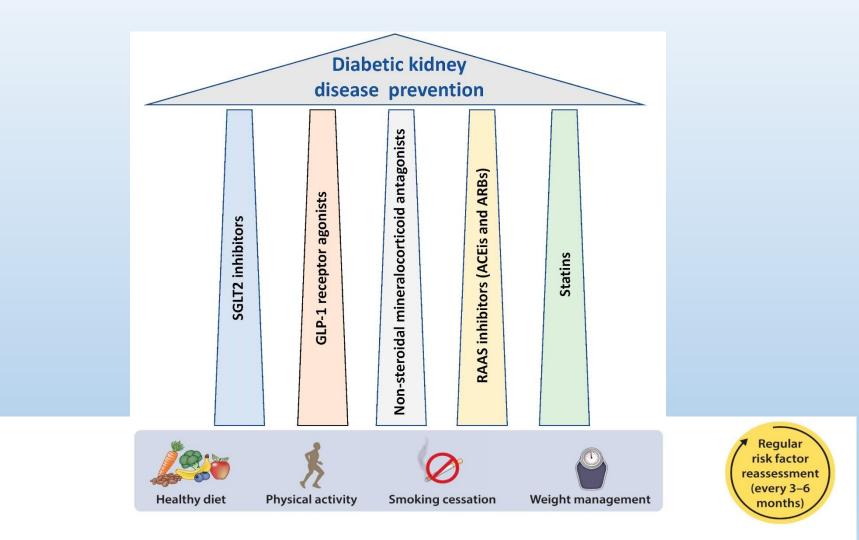
Variable	Early referral Mean (SD)	Late referral mean (SD)	P value
Overal mortality %	11 (3)	23 (4)	<0.0001
1-year motality %	13 (4)	29 (5)	0.028
Hospital stay, days	13.5 (2.2)	25.3 (3.8)	0.0007
KRT serum albumin (mg/dL)	3.62 (0.05)	3.40 (0.03)	0.001
KRT hematocrit %	30.54 (0.18)	29.71 (0.10)	0.013

Kidney Transplant

10 July 2019 Advancing American Kidney Health

Nephrology Consultant Selection: Suggestions based on opinion and data

- Uses the same electronic health record¹
- Communicates effectively¹
- Offers e-consultations²
- Is your peer or your co-trainee?³
- Offers the full spectrum of kidney failure replacement therapies


^{1.} J Gen Intern Med 2019;34:1228-1235

^{2.} Am J Kidney Dis 2017;70:122-131

^{3.} JAMA Intern Med 2023;183(2):124-132

Kidney and Cardiovascular Protection

Lifestyle

Pharmaceutics 2023;15:1343 Diabetes Care 2022;45:3075

THANK YOU

