

Lab #	Kemtec Lab Titles for AP® Chemistry Experiments	Match with AP® Concept Outline			To due also we 0	Tours In stream outs	Recommended
		Essential Knowledge	Science Practice	Learning Objectives	Sensor/Probe Usage	Simulations	College Board Investigations
S07328	Statistics – Precision and Accuracy – Inquiry*	1.A.2	2	1.2, 1.3	Statistics Analysis	Density of Matter, How Does it Stack	
S07329	Statistics – Precision and Accuracy with Glassware – Inquiry*	1.A.2	2	1.2, 1.3	Statistics Analysis	Density of Matter, How Does it Stack	
S07330	Spectrophotometric Analysis of Copper: Beer's Law – Inquiry*	1.D.3	2, 3, 5	1.15, 1.16	Spectrometer	Beers Law Data Collection, Graphical Analysis, The Ink is Still Wet	1, 2
S07331	Synthesis and Gravimetric Analysis of Cobalt Oxalate Hydrate	1.E.2, 3.B.1, 3	2,7	1.19, 1.20, 3.5, 3.9	Drop Counter	Chemical Balance	3, 7, 8, 9
S07332	Acid-Base Titrations – Inquiry*	1.E.2, 3.B.2, 6.C.1	2, 3	1.18, 1.20, 3.7, 6.12	Drop Counter	Molecular Titration	4
S07333	Separating Substances by Adsorption Chromatography (Paper and TLC) (Micro Lab) — <mark>Inquiry*</mark>	2.A.3, 2.B.2	1, 5	2.7, 2.8, 2.10, 2.13	Calculations Statistics	Intermolecular Forces	5
S07334	Stoichiometry: Reactions with Copper Compounds	1.A.3, 2.B.2, 3, 3.A.2	2,6	2.14, 2.15, 3.3, 3.5	Calculations	Moles Stoichiometry	10
S07335	Stoichiometry: Mole Ration of an Unknown	3.A.2, 3.B.1, 3.C.2	2, 3, 5	3.3, 3.4, 3.5, 3.11	Temperature Calculations	Moles Stoichiometry	
S07336	Using Colligative Properties to Determine Molar Mass of an Unknown — <mark>Inquiry*</mark>	2.A.3, 2.D.1, 4	2, 3, 5	2.22	Temperature Calculations	Intermolecular Forces	10
S07337	Determining Molar Mass Using the Ideal Gas Equation	2.A.1,2, 2.B.2	1, 2, 5	2.3, 2.4, 2.6, 2.12	Temperature Calculations	Where is the Heat? Hot Molecules, Diving Down Deep, Density of Matter - Bellringer	6
S07338	Reaction Rate and Order	4.A.1,2,3, 4.B.2	1,2, 4	4.1, 4.2, 4.3, 4.4	Temperature Calculations	Stopwatch	11
S07339	Determining Molar Enthalpy Using Hess's Law (Small Scale)	3.C.2, 5.B.1, 2,4 5.C.2	2,7	5.5, 5.7, 5.8	Temperature Calculations		12
S07340	Le Chatelier's Principle: A Qualitative Approach to Predicting Equilibrium Shifts (Small Scale)	6.B.1, 2	6, 7	5.16, 6.8, 6.9, 6.10			13
S07341	Identifying Weak Acids by pKa	3.B.2, 6.C.1, 2	2, 5, 6	2.2, 3.7, 6.13, 6.19	pH electrode Drop Counter	Interactive pH Titration	14
S07342	Preparing Buffer Solutions and Determining Their Properties	6.C.2	4, 7	6.18, 6.19, 6.20	pH electrode		15,16
S07343	Determining the Equilibrium Constant (and Temperature's Effect) with Beer's Law – Inquiry*	1.D.3, 6.A.2, 3,4 6.B.2	2,7	1.15,1.16, 6.2, .4,6.5, 6.6,6.7,6.10	Temperature Spectrometer	Beers Law Data Collection, Killer Cup of Coffee	11
S07344	Micro-scale Electrochemical Cells – Voltaic and Electrolytic	1.C.1, 3.C.3	3,7	1.10, 3.12, 3.13, 5.15	Voltage Probe	Breath of Fresh Air	

S07345Complete AP® Chemistry Series with S07328 (without glassware)S07346Complete AP® Chemistry Series with S07329 (with glassware)

FREE balance (\$600 value) with purchase of complete AP® Chemistry Series

The Kemtec AP[®] Chemistry series exceeds the 2013 Next Generation Science Standards and offers superior content when compared to other AP[®] product lines.

The Kemtec AP® Chemistry series includes 16 labs designed to meet the essential laboratory requirements of an AP® Chemistry course. As a series, these labs address the 2013 Essential Knowledge, Science Practices and Learning Objectives established by the AP® College Board. Six labs incorporate specific inquiry components and all labs contain instructions for optional inquiry adaptations. For planning purposes, each manual contains a complete breakdown of the AP® framework correlations for each of the 16 lab experiments. Each lab accommodates 24 students working in groups of two.

Available through:

Fisher Science Education

Why is AP[®] Chemistry Such a Big Deal Right Now?

- AP[®] Board Certification changes for 2013
- Requirement for 25% of class time to be spent in lab
- Requirement for 16 hands-on labs
- Six of the labs must be inquiry based

Key Features of Kemtec AP® Chemistry Series

- Exceed the 2013 Next Generation Science Standards
- Classroom-ready lessons and instructions for 24 students
- Options and transitions for guided inquiry
- Technology infused options
- Sample data, complete calculations & data analysis
- Pre and post -lab questions for assessment

Why Choose Kemtec AP® Chemistry Kits?

- Convenience significant reduction of preparation time
- Superior teacher manual with background information
- Prepared student handouts photocopy ready
- Pre measured chemicals reduces waste
- Refill packages available always have fresh reagents
- Safety no need to store large quantities of chemicals

AP[®] is a registered trademark of the College Board. The AP[®] Chemistry series developed by AquaPhoenix Scientific is not endorsed by the College Board and AquaPhoenix Scientific assumes sole responsibility for all content.

www.kemtecscience.com

S07328 Statistics: Precision and Accuracy

S07329 Statistics: Precision and Accuracy (with Glassware)

S07330 Spectrophotometric Analysis of Copper: Beer's Law

S07331 Synthesis and Gravimetric Analysis of Cobalt Oxalate Hydrate

S07332 Acid-Base Titrations: An Inquiry Investigation

S07333 Separating Substances by Adsorption Chromatography

S07334 Stoichiometry: Reactions with Copper Compounds

S07335 Stoichiometry: Mole Ratio of an Unknown

S07336 Determining Molar Mass by Colligative Properties

S07337 Determining Molar Mass Using the Ideal Gas Equation

S07338 Reaction Rate and Order

S07339 Determining Molar Enthalpy Using Hess's Law

S07340 Le Châtelier's Principle: A Qualitative Approach to Predicting Equilibrium Shifts (Small-Scale Lab)

S07341 Identifying Weak Acids by pKa

S07342 Preparing Buffer Solutions and Determining Their Properties

S07343 Determining the Equilibrium Constant (and Temperature's Effect) with Beer's Law

S07344 Micro-scale Electrochemical Cells: Voltaic and Electrolytic

www.kemtecscience.com